Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298255

RESUMEN

Drought stress is becoming the most important factor of global warming in forests, hampering the production of reproductive material with improved resilience. Previously, we reported that heat-priming maritime pine (Pinus pinaster) megagametophytes during SE produced epigenetic changes that generated plants better adapted to subsequent heat stress. In this work, we tested, in an experiment performed under greenhouse conditions, whether heat-priming will produce cross-tolerance to mild drought stress (30 days) in 3-year-old priming-derived plants. We found that they maintain constitutive physiological differences as compared to controls, such as higher proline, abscisic acid, starch, and reduced glutathione and total protein contents, as well as higher ΦPSII yield. Primed plants also displayed a constitutive upregulation of the WRKY transcription factor and the Responsive to Dehydration 22 (RD22) genes, as well as of those coding for antioxidant enzymes (APX, SOD, and GST) and for proteins that avoid cell damage (HSP70 and DHNs). Furthermore, osmoprotectants as total soluble sugars and proteins were early accumulated in primed plants during the stress. Prolongated water withdrawal increased ABA accumulation and negatively affected photosynthesis in all plants but primed-derived plants recovered faster than controls. We concluded that high temperature pulses during somatic embryogenesis resulted in transcriptomic and physiological changes in maritime pine plants that can increase their resilience to drought stress, since heat-primed plants exhibit permanent activation of mechanisms for cell protection and overexpression of stress pathways that pre-adapt them to respond more efficiently to soil water deficit.


Asunto(s)
Sequías , Pinus , Pinus/genética , Pinus/metabolismo , Antioxidantes/metabolismo , Agua/metabolismo , Desarrollo Embrionario , Estrés Fisiológico
2.
Front Plant Sci ; 14: 1337152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298606

RESUMEN

Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.

3.
Front Plant Sci ; 13: 824781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356118

RESUMEN

The dieback syndrome affecting Quercus ilex and other oak species impels the search for tolerant plant genotypes, as well as methods of plant immunization against such infections. Elicitation treatments can be an effective strategy to activate plant defense response and embryogenic lines represent a promising tool to generate new tolerant genotypes and also to study early markers involved in defense response. The aim of the presented work was to investigate changes in gene expression, and in hormonal and phenolic profiles induced in three holm oak embryogenic lines (ELs) elicited with methyl jasmonate (MeJA) before and after infection with the oomycete Phytophthora cinnamomi, which is the main biotic agent involved in this pathogenic process. The three ELs, derived from three genotypes, showed different basal profiles in all tested parameters, noting that the VA5 naïve genotype from a scape tree was characterized by a basal higher expression in NADPH-dependent cinnamyl alcohol dehydrogenase (CAD) and chalcone synthase (CHS) genes and also by higher caffeic acid content. Our work also identifies changes triggered by MeJA elicitation in holm oak embryogenic lines, such as increases in ABA and JA contents, as well as in levels of most of the determined phenolic compounds, especially in caffeic acid in Q8 and E00 ELs, but not in their biosynthesis genes. Irrespective of the EL, the response to oomycete infection in holm oak elicited plant material was characterized by a further increase in JA. Since JA and phenols have been described as a part of the Q. ilex defense response against P. cinnamomi, we propose that MeJA may act as an induced resistance (IR) stimulus and that in our embryogenic material induced both direct (detected prior to any challenge) and primed (detected after subsequent challenge) defense responses.

4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163242

RESUMEN

Under the global warming scenario, obtaining plant material with improved tolerance to abiotic stresses is a challenge for afforestation programs. In this work, maritime pine (Pinus pinaster Aiton) plants were produced from somatic embryos matured at different temperatures (18, 23, or 28 °C, named after M18, M23, and M28, respectively) and after 2 years in the greenhouse a heat stress treatment (45 °C for 3 h/day for 10 days) was applied. Temperature variation during embryo development resulted in altered phenotypes (leaf histology, proline content, photosynthetic rates, and hormone profile) before and after stress. The thickness of chlorenchyma was initially larger in M28 plants, but was significantly reduced after heat stress, while increased in M18 plants. Irrespective of their origin, when these plants were subjected to a heat treatment, relative water content (RWC) and photosynthetic carbon assimilation rates were not significantly affected, although M18 plants increased net photosynthesis rate after 10 days recovery (tR). M18 plants showed proline contents that increased dramatically (2.4-fold) when subjected to heat stress, while proline contents remained unaffected in M23 and M28 plants. Heat stress significantly increased abscisic acid (ABA) content in the needles of maritime pine plants (1.4-, 3.6- and 1.9-fold in M18, M23, and M28 plants, respectively), while indole-3-acetic acid content only increased in needles from M23 plants. After the heat treatment, the total cytokinin contents of needles decreased significantly, particularly in M18 and M28 plants, although levels of active forms (cytokinin bases) did not change in M18 plants. In conclusion, our results suggest that maturation of maritime pine somatic embryos at lower temperature resulted in plants with better performance when subjected to subsequent high temperature stress, as demonstrated by faster and higher proline increase, lower increases in ABA levels, no reduction in active cytokinin, and a better net photosynthesis rate recovery.


Asunto(s)
Respuesta al Choque Térmico/genética , Pinus/crecimiento & desarrollo , Pinus/genética , Agricultura/métodos , Sequías , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Técnicas de Embriogénesis Somática de Plantas/métodos , Temperatura
5.
Plants (Basel) ; 10(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652929

RESUMEN

In the context of global climate change, forest tree research should be addressed to provide genotypes with increased resilience to high temperature events. These improved plants can be obtained by heat priming during somatic embryogenesis (SE), which would produce an epigenetic-mediated transgenerational memory. Thereby, we applied 37 °C or 50 °C to maritime pine (Pinus pinaster) megagametophytes and the obtained embryogenic masses went through the subsequent SE phases to produce plants that were further subjected to heat stress conditions. A putative transcription factor WRKY11 was upregulated in priming-derived embryonal masses, and also in the regenerated P37 and P50 plants, suggesting its role in establishing an epigenetic memory in this plant species. In vitro-grown P50 plants also showed higher cytokinin content and SOD upregulation, which points to a better responsiveness to heat stress. Heat exposure of two-year-old maritime pine plants induced upregulation of HSP70 in those derived from primed embryogenic masses, that also showed better osmotic adjustment and higher increases in chlorophyll, soluble sugars and starch contents. Moreover, ϕPSII of P50 plants was less affected by heat exposure. Thus, our results suggest that priming at 50 °C at the SE induction phase is a promising strategy to improve heat resilience in maritime pine.

6.
Plants (Basel) ; 9(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322106

RESUMEN

Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 °C, eight weeks, control; 40 °C, 4 h; 60 °C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.

7.
Mycologia ; 112(4): 819-828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32663121

RESUMEN

Three new arbuscular mycorrhizal fungal species-Glomus ibericum, Septoglomus mediterraneum, and Funneliformis pilosus-are described and illustrated. In the field, the three species were associated with roots of Ammophila arenaria (Poaceae), Elymus farctus (Poaceae), Otanthus maritimus (Asteraceae), and Echinophora spinosa (Apiaceae) colonizing maritime dunes located along the Mediterranean coast in eastern Spain. The novelty of these species is supported by morphological, molecular, and phylogenetic analyses. Single-species cultures of S. mediterraneum and F. pilosus were obtained using Trifolium repens as a host plant, both forming arbuscular mycorrhizae, whereas single-species cultures from G. ibericum could not be obtained. Spores of G. ibericum usually occur in sporocarps, rarely singly in soil or inside roots. In contrast, S. mediterraneum only forms single spores in soil and F. pilosus occurs in sporocarps and singly in soil or inside roots. The respective small subunit, internal transcribed spacer, and large subunit (SSU-ITS1-5.8S-ITS2-LSU) nrDNA sequences placed the new species in the genera Glomus, Septoglomus, and Funneliformis, all of them separated from previously described species.


Asunto(s)
Glomeromycota/clasificación , Micorrizas/clasificación , ADN de Hongos/genética , ADN Ribosómico/genética , Glomeromycota/citología , Glomeromycota/genética , Micorrizas/citología , Micorrizas/genética , Filogenia , Raíces de Plantas/microbiología , Plantas/clasificación , Plantas/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo , España , Especificidad de la Especie , Esporas Fúngicas/clasificación , Esporas Fúngicas/citología , Esporas Fúngicas/genética
8.
Front Plant Sci ; 10: 239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967881

RESUMEN

Quercus ilex (holm oak) is one of the most representative trees in the Mediterranean basin, but now the sustainability of its ecosystems is at serious risk due to the lack of natural regeneration and to the presence of a severe disease called oak decline that has caused the death of thousands of trees. The application of biotechnological tools, such as somatic embryogenesis, allows programs of genetic improvement of the species to be speeded up and helps in the conservation of its ecosystems. Somatic embryogenesis is currently considered one of the main biotechnological techniques that has demonstrated significant benefits when has applied to forest tree species, providing significant advantages such as mass propagation, genetic transformation, application of synthetic seed, and cryopreservation of elite genotypes. In this report, the state of the art of somatic embryogenesis in holm oak is reviewed. Factors affecting the induction (plant donor age, type of explant, or plant growth regulators) and maintenance and proliferation of the embryogenic cultures are summarized. Advances on the conversion of somatic embryos into plants and on the acclimatization of these plantlets, as well as the results obtained on the application of the genetic transformation and the cryopreservation procedures to holm oak embryogenic cultures, are also presented.

9.
Front Plant Sci ; 10: 138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838010

RESUMEN

Maritime pine (Pinus pinaster Aiton) is a coniferous native of the Mediterranean basin. Because of its adaptability to a wide range of environmental conditions, the species have become a model for studies in coniferous forest management and functional genomics. Somatic embryogenesis (SE) has been so far, the preferred biotechnological strategy for maritime pine breeding programs initiated at the middle-end of the 20th century. To overcome the limitations of the induction and maturation phases in maritime pine SE, we analyzed the possible maternal influence on the embryogenic capability of megagametophytes from controlled crosses, as well as the effect of the temperature and water availability during SE process on the production of plants. A strong maternal effect on the embryogenic potential of maritime pine megagametophytes was observed in our experiments using half-sib and full-sib progenies, while paternal effect was almost undetectable. Besides, it seems possible to improve somatic embryo production of maritime pine megagametophytes by adjusting optimal temperature throughout the process: 28°C during induction and proliferation, and 23°C during the maturation phase. Using induction and proliferation media with reduced water availability (6 g/L Gelrite) can also increase embryo production. Since other limitation of maritime pine SE is culture decline of embryogenic masses (EMs), that reduces embryo yield and germination, we assessed the profile of ABA and IAA and the expression of two embryogenesis-related genes (LEC1 and WOX2) during maturation of EMs of two morphotypes that differed in their maturation capability. Spiky morphotype (SK), with high maturation capability, had a steady increase in both hormones along the 12 weeks of the maturation, whereas ABA content in smooth morphotype picked at the 4th week and dropped. EMs with this morphotype also had a higher IAA content at the beginning of the maturation. A decrease of LEC1 and WOX2 gene expression over the course of embryo development was found to be characteristic of the SK with high maturation capability.

10.
Metabolites ; 7(4)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257083

RESUMEN

The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender (Lavandula latifolia Med) on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

12.
BMC Genomics ; 17: 148, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26922242

RESUMEN

BACKGROUND: In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. RESULTS: In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. CONCLUSIONS: The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.


Asunto(s)
Genoma de Planta , Modelos Genéticos , Pinus/genética , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Exones , Biblioteca de Genes , Genómica/métodos , Intrones , Análisis de Secuencia de ADN
13.
Plant Physiol Biochem ; 95: 113-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254184

RESUMEN

The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in developing spike lavender (Lavandula latifolia Med) was analyzed using specific inhibitors and on the basis of (13)C-labeling experiments. The presence of mevinolin (MEV), an inhibitor of the MVA pathway, at concentrations higher than 0.5 µM significantly reduced plant development, but not the synthesis of chlorophylls and carotenoids. On the other hand, fosmidomycin (FSM), an inhibitor of the MEP pathway, at concentrations higher than 20 µM blocked the synthesis of chlorophyll, carotenoids and essential oils, and significantly reduced stem development. Notably, 1.2 mM MVA could recover the phenotype of MEV-treated plants, including the normal growth and development of roots, and could partially restore the biosynthesis of photosynthetic pigments and, to a lesser extent, of the essential oils in plantlets treated with FSM. Spike lavender shoot apices were also used in (13)C-labeling experiments, where the plantlets were grown in the presence of [U-(13)C6]glucose. GC-MS-analysis of 1,8-cineole and camphor indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the methylerythritol phosphate (MEP) pathway. However, on the basis of the isotopologue profiles, a minor contribution of the MVA pathway was evident that was increased in transgenic spike lavender plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first enzyme of the MVA pathway. Together, these findings provide evidence for a transport of MVA-derived precursors from the cytosol to the plastids in leaves of spike lavender.


Asunto(s)
Lavandula/metabolismo , Brotes de la Planta/metabolismo , Terpenos/metabolismo , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/genética , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/metabolismo , Lavandula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética
14.
J Plant Physiol ; 171(17): 1564-70, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25151124

RESUMEN

Spike lavender (Lavandula latifolia) is an economically important aromatic plant producing essential oils, whose components (mostly monoterpenes) are mainly synthesized through the plastidial methylerythritol 4-phosphate (MEP) pathway. 1-Deoxy-D-xylulose-5-phosphate (DXP) synthase (DXS), that catalyzes the first step of the MEP pathway, plays a crucial role in monoterpene precursors biosynthesis in spike lavender. To date, however, it is not known whether the DXP reductoisomerase (DXR), that catalyzes the conversion of DXP into MEP, is also a rate-limiting enzyme for the biosynthesis of monoterpenes in spike lavender. To investigate it, we generated transgenic spike lavender plants constitutively expressing the Arabidopsis thaliana DXR gene. Although two out of the seven transgenic T0 plants analyzed accumulated more essential oils than the controls, this is hardly imputable to the DXR transgene effect since a clear correlation between transcript accumulation and monoterpene production could not be established. Furthermore, these increased essential oil phenotypes were not maintained in their respective T1 progenies. Similar results were obtained when total chlorophyll and carotenoid content in both T0 transgenic plants and their progenies were analyzed. Our results then demonstrate that DXR enzyme does not play a crucial role in the synthesis of plastidial monoterpene precursors, suggesting that the control flux of the MEP pathway in spike lavender is primarily exerted by the DXS enzyme.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Lavandula/enzimología , Aceites Volátiles/metabolismo , Aceites de Plantas/metabolismo , Transferasas/metabolismo , Isomerasas Aldosa-Cetosa/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Flores/química , Flores/enzimología , Flores/genética , Expresión Génica , Lavandula/química , Lavandula/genética , Monoterpenos/metabolismo , Fenotipo , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Fosfatos de Azúcar/metabolismo , Transferasas/genética
15.
Metab Eng ; 23: 136-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24685653

RESUMEN

Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used.


Asunto(s)
Lavandula , Monoterpenos/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Monoterpenos Acíclicos , Clarkia/enzimología , Clarkia/genética , Eritritol/análogos & derivados , Eritritol/genética , Eritritol/metabolismo , Hidroliasas/biosíntesis , Hidroliasas/genética , Lavandula/genética , Lavandula/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo , Transgenes
16.
Metab Eng ; 10(3-4): 166-77, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18514005

RESUMEN

We generated transgenic spike lavender (Lavandula latifolia) plants constitutively expressing the limonene synthase (LS) gene from spearmint (Mentha spicata), encoding the LS enzyme that catalyzes the synthesis of limonene from geranyl diphosphate. Overexpression of the LS transgene did not consistently affect monoterpene profile in pooled leaves or flowers from transgenic T(0) plants. Analyses from cohorts of leaves sampled at different developmental stages showed that essential oil accumulation in transgenic and control plants was higher in developing than in mature leaves. Furthermore, developing leaves of transgenic plants contained increased limonene contents (more than 450% increase compared to controls) that correlated with the highest transcript accumulation of the LS gene. The levels of other monoterpene pathway components were also significantly altered. T(0) transgenic plants were grown for 2 years, self-pollinated, and the T(1) seeds obtained. The increased limonene phenotype was maintained in the progenies that inherited the LS transgene.


Asunto(s)
Liasas Intramoleculares/genética , Lavandula/fisiología , Mentha spicata/fisiología , Monoterpenos/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/fisiología , Mejoramiento Genético/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/metabolismo
17.
Plant Biotechnol J ; 5(6): 746-58, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17714440

RESUMEN

Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Lavandula/enzimología , Aceites Volátiles/metabolismo , Fitosteroles/biosíntesis , Pigmentos Biológicos/biosíntesis , Plantas Modificadas Genéticamente/enzimología , Arabidopsis/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Lavandula/genética , Lavandula/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sesquiterpenos/metabolismo , Sitoesteroles/metabolismo , Estigmasterol/metabolismo , Regulación hacia Arriba
18.
Planta Med ; 73(6): 605-10, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17516328

RESUMEN

Pathway engineering in medicinal plants attains a special significance in Digitalis species, the main industrial source of cardiac glycosides, steroidal metabolites derived from mevalonic acid via the triterpenoid pathway. In this work, the Arabidopsis thaliana HMG1 cDNA, coding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the MVA pathway, was expressed in the cardenolide-producing plant Digitalis minor. Transgenic plants were morphologically indistinguishable from control wild plants and displayed the same developmental pattern. Constitutive expression of HMG1 resulted in an increased sterol and cardenolide production in both in vitro- and greenhouse-grown plants. This work demonstrates that transgenic D. minor plants are a valuable system to study and achieve metabolic engineering of the cardenolide pathway and in consequence for the genetic improvement of Digitalis species.


Asunto(s)
Digitalis/genética , Regulación de la Expresión Génica de las Plantas , Hidroximetilglutaril-CoA Reductasas/biosíntesis , Fitoterapia , Extractos Vegetales/biosíntesis , Plantas Modificadas Genéticamente/enzimología , Cardenólidos/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Fitosteroles/metabolismo
19.
Plant Physiol ; 142(3): 890-900, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16980564

RESUMEN

Spike lavender (Lavandula latifolia) is an aromatic shrub cultivated worldwide for the production of essential oils. The major constituents of these oils are monoterpenes, which are obtained from isopentenyl diphosphate and dimethylallyl diphosphate precursors through the plastidial methylerythritol phosphate (MEP) pathway and/or the cytosolic mevalonate pathway. 1-Deoxy-D-xylulose-5-P synthase (DXS) catalyzes the first step of the MEP pathway. A cDNA coding for the Arabidopsis (Arabidopsis thaliana) DXS was constitutively expressed in spike lavender. Gas chromatography/mass spectrometry analyses revealed that transgenic plants accumulated significantly more essential oils compared to controls (from 101.5% to 359.0% and from 12.2% to 74.1% yield increase compared to controls in leaves and flowers, respectively). T(0) transgenic plants were grown for 2 years, self-pollinated, and the T(1) seeds obtained. The inheritance of the DXS transgene was studied in the T(1) generation. The increased essential oil phenotype observed in the transgenic T(0) plants was maintained in the progeny that inherited the DXS transgene. Total chlorophyll and carotenoid content in DXS progenies that inherited the transgene depended on the analyzed plant, showing either no variation or a significant decrease in respect to their counterparts without the transgene. Transgenic plants had a visual phenotype similar to untransformed plants (controls) in terms of morphology, growth habit, flowering, and seed germination. Our results demonstrate that the MEP pathway contributes to essential oil production in spike lavender. They also demonstrate that the DXS enzyme plays a crucial role in monoterpene precursor biosynthesis and, thus, in essential oil production in spike lavender. In addition, our results provide a strategy to increase the essential oil production in spike lavender by metabolic engineering of the MEP pathway without apparent detrimental effects on plant development and fitness.


Asunto(s)
Lavandula/genética , Lavandula/metabolismo , Aceites Volátiles/metabolismo , Transferasas/metabolismo , Regulación hacia Arriba , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
20.
Plant Cell Rep ; 25(7): 636-42, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16491380

RESUMEN

We developed procedures for slow-growth storage of Cedrus atlantica and Cedrus libani microcuttings of juvenile and adult origin, noting factors favouring the extension of subculture intervals. Microcuttings could be stored effectively up to 6 months at 4 degrees C and reduced light intensity, provided that they were grown on a diluted modified MS medium. The addition of 6% mannitol to the storage media affected negatively survival and multiplication capacity of the cultures. The slow-growth storage conditions used in our experiments did not induce remarkable effects on both RAPD variability and average DNA methylation in the species.


Asunto(s)
Cedrus/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Cedrus/efectos de los fármacos , Cedrus/genética , Medios de Cultivo/farmacología , Metilación de ADN/efectos de los fármacos , Filogenia , Brotes de la Planta/efectos de los fármacos , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...